Ejercicios (Series de potencias)

10.1. Determinar el intervalo de convergencia de las series de potencias

a)
$$\sum_{n=0}^{\infty} \left(\frac{n!}{3 \cdot 5 \cdots (2n+1)} \right)^2 x^n$$

a)
$$\sum_{n=0}^{\infty} \left(\frac{n!}{3 \cdot 5 \cdots (2n+1)} \right)^2 x^n$$
, b) $\sum_{n=0}^{\infty} \binom{2n}{n} x^n$, c) $\sum_{n=0}^{\infty} n(\sqrt[n]{2} - 1) x^n$,

d)
$$\sum_{n=1}^{\infty} n^{\log n/n} \operatorname{sen} \frac{1}{\sqrt{n}} \cdot x^n,$$

e)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2} x^n$$
, f) $\sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$,

$$g) \sum_{n=0}^{\infty} \frac{3^n}{n4^n} x^n,$$

g)
$$\sum_{n=0}^{\infty} \frac{3^n}{n4^n} x^n$$
, h) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 4^n} x^n$, i) $\sum_{n=0}^{\infty} \sqrt{n} x^n$, j) $\sum_{n=0}^{\infty} x^{n!}$,

i)
$$\sum_{n=0}^{\infty} \sqrt{n} x^n,$$

$$j) \sum_{n=0}^{\infty} x^{n!}.$$

$$\mathbf{k}) \sum_{n=1}^{\infty} n^{-\sqrt{n}} x^n,$$

k)
$$\sum_{n=1}^{\infty} n^{-\sqrt{n}} x^n$$
, l) $\sum_{n=1}^{\infty} \frac{3^n}{\sqrt{n}} x^{2n+1}$, m) $\sum_{n=0}^{\infty} n! \left(\frac{x}{n}\right)^n$, n) $\sum_{n=0}^{\infty} \frac{\log n}{n} x^n$,

m)
$$\sum_{n=0}^{\infty} n! \left(\frac{x}{n}\right)^n,$$

$$\mathbf{n}) \sum_{n=0}^{\infty} \frac{\log n}{n} x^n$$

$$\tilde{\mathbf{n}}) \sum_{n=0}^{\infty} x^n \tan \frac{a}{2^n}.$$

10.2. Desarrollar en series de potencias de x las siguientes funciones, indicando en qué intervalos son válidos los desarrollos:

a)
$$\frac{2x^2-3}{(x-1)^2}$$

b)
$$\frac{x}{9+x^2}$$
,

c)
$$\frac{1}{4-r^4}$$
,

a)
$$\frac{2x^2-3}{(x-1)^2}$$
, b) $\frac{x}{9+x^2}$, c) $\frac{1}{4-x^4}$, d) $\log(1+x-2x^2)$,

e)
$$\log \frac{1+x}{1-x}$$

e)
$$\log \frac{1+x}{1-x}$$
, f) $\log(x+\sqrt{1+x^2})$, g) $\sqrt[3]{8+x}$,

g)
$$\sqrt[3]{8+x}$$
,

h)
$$(1 + e^x)^3$$

i)
$$(1+x)e^{-x}$$
,

j)
$$\cos^2 x$$
,

h)
$$(1+e^x)^3$$
, i) $(1+x)e^{-x}$, j) $\cos^2 x$, k) $\cos x \sin^2 x$,

$$1) \, \, \mathrm{sen}^2 \, 2x,$$

m)
$$\log \frac{a+bx}{a-bx}$$
, a,b

n)
$$\log(1-2x)$$

$$\tilde{\mathbf{n}}) \ \sqrt{1+x^3}$$

l)
$$\sin^2 2x$$
, m) $\log \frac{a+bx}{a-bx}$, $a,b>0$, n) $\log (1-2x)$, $\tilde{\mathbf{n}}$) $\sqrt{1+x^3}$, o) $\frac{x}{a^2-b^2x^2}$, $a,b>0$, p) $(x^2+1)e^{2x}$,

p)
$$(x^2+1)e^{2x}$$
,

q)
$$\sin x - x \cos x$$
,

r)
$$\frac{1}{x-1} + x^2 \sin x$$
,

s)
$$\int_{0}^{x} e^{-z^2} dz,$$

s)
$$\int_0^x e^{-z^2} dz$$
, t) $\int_0^x \frac{dz}{\sqrt{1-z^4}}$.

10.3. Sea $f(x) = \int_0^x \sqrt{8-t^3} \, dt$, para $x \in (-\infty,2]$. Desarrollar f en serie de potencias de x (centrada en 0). Hallar el radio y el intervalo de convergencia del desarrollo. Hallar $f^{(7)}(0)$ y $f^{(11)}(0)$.

10.4. Desarrollar en series de potencias de $x-x_0$ las siguientes funciones, indicando en qué intervalos son válidos los desarrollos:

1

a)
$$(a+bx)^{-1}$$
, $x_0 = 1$, $a, b > 0$, b) $\sin \frac{3x}{2}$, $x_0 = \pi$,

c)
$$\sqrt{1+x}$$
, $x_0 = 3$, d) $\log 2x - \frac{1}{x-1}$, $x_0 = 2$.

10.5. Desarrollar en serie de potencias de x la función

$$f(x) = \int_0^x \frac{t \, dt}{(3-t)(t+2)}, \qquad -2 < x < 3,$$

y determinar el radio y el intervalo de convergencia de la serie.

10.6. Determinar el dominio de convergencia y la suma de las series:

a)
$$1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{4n-1}}{4n}$$
, b) $\frac{x}{1 \cdot 2} + \frac{x^2}{2 \cdot 3} + \frac{x^3}{3 \cdot 4} + \frac{x^4}{4 \cdot 5} + \cdots$

10.7. Hallar el dominio de convergencia de la serie $\sum_{n=1}^{\infty} \frac{x^{4n-1}}{4n-1}$ y probar que sus suma es

$$\frac{1}{4}\log\frac{1+x}{1-x} - \frac{1}{2}\arctan x.$$

- **10.8.** Encontrar la única serie de potencias $f(x) = \sum_{n=0}^{\infty} a_n x^n$ con radio de convergencia no nulo que cumple f'' + f = 0, f(0) = 1, f'(0) = 0. Identificar esta función.
- **10.9.** Hallar el radio y el intervalo de convergencia de la serie $\sum_{n=1}^{\infty} \frac{x^{3n}}{n(3n-1)}$ y sumarla en el intervalo abierto. Hallar la suma de la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(3n-1)}$.
- **10.10.** Hallar el radio y el intervalo de convergencia de la serie $\sum_{n=1}^{\infty} \frac{x^{3n}}{n(3n+1)}$ y sumarla en el intervalo abierto. Hallar la suma de la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(3n+1)}$.
- **10.11.** Hallar el intervalo de convergencia de la serie de potencias $f(x) = \sum_{n=2}^{\infty} \frac{2^n(n-1)}{n^2+n} x^{n+1}$. Probar que $f(x) = (x-1)\log(1-2x) 2x$ en ese intervalo.